NOM:

Interrogation écrite de chimie

Mercredi 4 octobre 2023

Durée: 10 minutes

La calculatrice est interdite.

Répondre directement sur cette feuille.

L'acide benzoïque est une espèce chimique moléculaire solide à température ambiante, se présentant sous forme d'une poudre blanche. On le notera $AH_{(s)}$.

Dans un volume $V=100~\mathrm{mL}$ de solution aqueuse d'hydroxyde de sodium Na(OH) (soude) de concentration $C=1,00~\mathrm{mol}\cdot\mathrm{L}^{-1}$, on introduit, avec une spatule, une quantité de matière n_0 d'acide benzoïque.

Il se produit alors la réaction (R) suivante :

$$AH_{(s)} + HO_{(aq)}^- = A_{(aq)}^- + H_2O_{(\ell)}$$

La constante d'équilibre de cette réaction vaut $K^{\circ} = 10^{+5}$.

1) État initial

a) Déterminer la quantité de matière initiale n_1 du soluté $\mathrm{HO}^-_{(\mathrm{aq})}$.

 $n_1 =$

b) Donner l'expression générale du quotient réactionnel Q en fonction des activités des constituants de l'équation, puis en remplaçant les activités par leur expression dans le cas idéal :

$$Q = =$$

c) Montrer que la réaction (R) doit nécessairement évoluer dans le sens direct à partir de l'état initial.

2) <u>Évolution</u>

Donner l'expression du quotient réactionnel en fonction de l'avancement ξ de la réaction (R).

$$Q =$$

3) État final dans le cas où $n_0 = 0.060$ mol

b) Déterminer les quantités de matière de $\mathrm{AH}_{(\mathrm{s})}$, de	e HO _(aq) et de A _(aq)	dans l'état final d	lans ce cas. Est
ce un état d'équilibre chimique ?			

4) État final dans le cas où $n_0 = 0.140$ mol

- a) Quel est dans ce cas le réactif limitant?
- b) Montrer que, dans ce cas, l'état final est nécessairement un état d'équilibre.
- c) Énoncer le principe de l'hypothèse de la réaction quasi-totale, et déterminer les quantités de matière de $AH_{(s)}$ et de $A^-_{(aq)}$ dans l'état final, dans le cadre de cette hypothèse.

d) Vérifier la validité de l'hypothèse et conclure quant à la nature de l'état final.